GOLBISIN

ColdFusionlournal.com

From the Editor
Hitting the
Ground Running
Chad Sitler page 5

ColdFusion Tag Gallery
A Simple Custom

ColdFusion Tag
Jeb Beasley page 16

Slick Tricks
Hidden Frames

and JavaScript
Dan Chick page 32

Tips & Techniques
Form to Mail
Applications
Jim Esten page 38

CFDJ News
page 42

User Group News
page 15

A Look Inside
ColdFusion 4.0
Developer

Enhancements
Charles Arehart page 44

I(PUBLIOATIONS

/
U.S. $8.99 (Canada $9.99)

Dasslanare
Jouraa;

April, 1999 Volume: 1 Issue: 2

CFDJ
FEATURE

h page 10

<BF on CF>: Caching in on Performance P e
When used properly, query caching can dramatically 4

improve application performance and response time Ben Forta

CFED] Special Feature: Introduction to the Problem 10

Bmldmg collaborative workspaces on the Web Hal Helms
Feature: So You've Outgrown Access 18
Making the move to enterprise-capable SQL Server Richard Schulze
Feature: Who Sa ays You Can't Take It withYou? ; 26
Keeping your e-mail accessible when :

you'’re away from your personal computer m Rich Rosen

==

CFD] Feature: What's In It for Me? 34
Taking advantage of new features in ColdFusion 4.0 Michael J. Murdy

Product Review: NetObjects Fusion 4.0

Designing great-looking Web pages
couldn’t be easier with this invaluable tool

IMHO: New Business Models on the Web 50

How to get to the next level from here s Jeremy Allaire

48

Who S

by Rich Rosen

Have you ever been off on a
trip, away from your home or
office computer, and wanted (no,
needed!) to check your e-mail?

Or have you ever been
stuck at a location where
firewalls or other net-
work limitations prevented
you from accessing your
mail or sending mail to others?

E-mail has become a lifeline for many
people. For some, it’s the main mechanism
for staying in touch with others. (Many
have been known to check their e-mail
more frequently than they check their
voicemail or answering machine.) For an
increasing number of people, being able to
access e-mail is not just a luxury, it’s an
absolute necessity.

How do you check your e-mail when you
don't have access to your own computer?
Of course, you need a computer with an
Internet connection, but that’s just the
beginning. In the olden days, before the
existence of the Web, it was rather simple.
You could telnet to your UNIX host and run
an e-mail program like elm or pine.

Nowadays, the process is much more
complicated. Most people use POP3-based
clients like Eudora, Outlook or Netscape
Messenger to retrieve and send e-mail,
including attachments. If you don’t want to
go to the bother of setting yourself up as a
“user” of one of these e-mail client pro-
grams on someone else’s computer, or if
you simply can't make use of such pro-
grams because a firewall blocks POP3 traf-
fic, another solution is needed.

A Web-based e-mail system is a perfect
solution. Users can connect to a Web site

26 GouwFusion Deveroper’s JOURNAL o VOLUME: 1 ISSUE:2

a
Take

CFDJ FEATURE

ys You

</

that allows them to
login, supply their e-
mail password (and
other relevant infor-
mation) and view a list
of messages for them
to read. Unlike the typi-
cal POP3 client pro-
gram that deletes your
messages from the serv-
er as they're down-
loaded, this application would leave your
messages on the server so that you'd have
access to them when you got back to your
home base. In addition, you could down-
load the messages you wanted to view
selectively, skipping spam and other
unwanted e-mail.

This article describes how I used Cold-
Fusion to build a Web-based e-mail system
called popART, for “POPmail Access and
Retrieval Tool.” (I considered calling it
“popTART,” but feared my lawyer would get
a phone call from Battle Creek, Michigan.)
The goal was to create a robust, full-
featured application for people who are
used to more sophisticated e-mail clients
like Netscape Messenger, Outlook or Eudo-
ra. [t may not replace these programs, but
it can serve as a viable alternative when
they’re not available, for whatever reason.

Can't

TaWith You?

How to keep your e-mail accessible
— even when you re not

Why Reinvent the Wheel?

The question arises: Why build a Web-
based e-mail system at all? Many portal ser-
vices already provide a variant of this kind
of service. You can use these services to
access your e-mail easily over the Web, pro-
vided you sign up for an e-mail address on
their site. Some of them even let you access
mail from your home or office e-mail
addresses. But outgoing mail sets your e-
mail address to “so-and-so@portal-
mail.com” rather than to your original e-
mail address. Unless you're looking for
anonymity (or extra work for yourself), why
get yet another e-mail address?

People who just want access to their
home or office e-mail simply need a system
that will provide them with that access
without requiring them to sign up for a new
e-mail address or use proprietary software.

www.ColdFusionJournal.com

Such a system would be an extremely use-
ful, generalized tool for anyone on the Net
to use. It could also be configured as a cus-
tomized application for a particular group
of people who get their e-mail from one par-
ticular server, such as the employees of a
company or the customers of an ISP.

Why Use ColdFusion?

ColdFusion is a perfect platform choice
for building a Web-based e-mail system.
Two of ColdFusion’s tags, <CFPOP> and
<CFMAIL>, are specifically tailored for this
very sort of task. But throwing together a
ColdFusion module that uses these tags
doesn’t necessarily make it a viable e-mail
system. The key is to maintain “state”
between pages so the necessary connec-
tion information is known at all

times without requiring the

retransmission of that infor-
mation every time the user
goes from page to page. (Since
the password is part of that con-
nection information, ideally it
should be transmitted as little as pos-
sible -- and preferably not as part of a URL
query string)
I've provided snippets of ColdFu-
sion code from some of the
core modules to illustrate
the process of
building this
application.
However, these
snippets are sim-
plified versions of the
code that I eventually used in my own appli-
cation, and additional work would be
required to create a solid and robust e-mail
system based on them.

Requirements
The basic requirements for an applica-

tion like this are as follows:

1. A login page. This page would provide a
place for users to enter all the informa-
tion necessary to connect them to their
POP mail server. This would include
their POP user name, their password
and the name/address of their POP mail
Server.

(This page doesn’t need to be a Cold-
Fusion module. It can be a simple HTML
page with a form on it. The form’s
ACTION parameter should point to a
ColdFusion module that uses the
<CFPOP> tag to connect to the server to
retrieve mail, using the POST method so
that sensitive information isn’t included
in the URL. The password would be
entered here and used as the basis for
secure access to e-mail throughout the
application, but wouldn'’t be retained or
recorded.)

www.ColdFusionJournal.com

2. A message list page. Once connected, a
page should be displayed that lists the
“headers” of the messages waiting for
you on the server. The header is the part
of an e-mail message containing “metada-
ta” information about the message, such
as its subject, the address of the person
who sent it to you and when it was sent.
You'll use the <CFPOP> tag to return the
headers of all messages and format them
as an HTML table with links to the “bod-
ies” of the individual messages.

3. A message display page. Each entry on
the message list page should include a
link to a page that will display the con-
tents ("body") of that individual mes-
sage. You can use the <CFPOP> tag here
to retrieve the header and body of an
individual message.

4. A means of replying to a message. By
clicking on a link found on the message
display page, a user should be able to
send a reply to the message. Ideally, sim-
ilar links should be available to do “reply
all” (reply to everyone who got or sent
the message) and “forward” (send the
message on to someone else). The appli-
cation can open a window using
JavaScript that includes a form with a
<TEXTAREA> for entering the response
message. This form can link to a page
that makes use of the <CFMAIL> tag to
actually send the e-mail.

5. A means of generating a new message. Sim-
ilarly, there should be a way to create a new
e-mail message from scratch. This function
should be usable from everywhere in the
application. If you play your cards right,
you can reuse some of the functionality
you built for replying to messages.

In addition, it would be useful for the
application to have a means of viewing or
downloading attachments to messages, of
deleting messages and of retrieving new
mail from the server. This article won't
cover these additional features.

Use of Session Variables

A fundamental part of this application is
its use of ColdFusion’s session variables to
maintain “state” as the user jumps from
page to page. Under the covers, session
variables make use of cookies to identify a
pool of values associated with a given appli-
cation. For this application, the session
variables hold the POP server connection
information (user name, password, etc.) so
that they can persist across pages. This
means the application doesn’t repeatedly
retransmit this information between the
ColdFusion server and the browser (though
it does transmit the information between
the ColdFusion server and the user’s POP
mail server for each request).

The global ColdFusion module Applica-
tion.cfm should be used to establish the
session variable scope. It can also be used
to set other global parameters.

<CFAPPLICATION NAME=*popart”

SESSTONMANAGEMENT=“Yes "

SESSIONTIMEOUT=600>
<CFSET SMTPhost = “smtphost.myisp.com”>

Once session variables are set, they
don’t need to be included as parameters in
links to subsequent pages, either within the
query string portion of the URL (for GET) or
within the standard input (for POST). The
less this information (which includes the
password) is transmitted across the wire,
the better.

POP3 Protocol and
the <CFPOP> Tag

To understand the structure of the appli-
cation you're building, you need some basic
knowledge of the POP3 protocol used to
retrieve e-mail on the Internet (see Figure 1).

A very simplified POP3 session goes
something like this. By telnetting to port
110, you can “talk” to the POP3 server
directly. After the server acknowledges
your connection, you can send a line that
says “USER username” (substituting your
user name, of course). The server will
respond by telling you that you need a
password, so you send another line that
says “PASS password.” Once you have
passed these authorization tests, you can
interrogate the POP3 server about your e-
mail by sending additional commands.

The STAT command will tell you how
many e-mail messages are waiting. You can
use that number as an upper bound for suc-
cessive applications of the RETR or TOP
command, which can retrieve individual
messages (header and body) or just the
headers from messages. If desired, the
DELE command can permanently delete
specific messages from the server. (The
deletion becomes permanent only when
you “commit” by explicitly entering a QUIT
command. Messages won't be purged if a
session is terminated prior to issuing the
QUIT command.)

— (¥]

. ..]Iswr agttmg'usgm?
S passwo er password
ST

tﬂmber of nﬂss@ﬁés.ﬂ.ﬂ

uRH‘ nas #
.: itg‘ — ;‘g;eaage brst%e of i’ |

Delete mess
ﬁ =End POlsesﬁnd:p‘omut

J

= &
i Cangessie i o

Figure 1: Basic POP3 commands chart

VOLUME: 1 Issue:2 o GooFusion Devetoeer’s JoumnaL 27

Figure 2: The login page

ColdFusion’s <CFPOP> tag can perform
sophisticated operations by automatically
grouping these commands together. It
returns results in a manner similar to
<CFQUERY> or <CFDIRECTORY>, so “rows”
returned can be iteratively processed via
the <CFOUTPUT> tag.

The <CFPOP> tag’s required parameters
are a USERNAME, a PASSWORD, a SERVER
name, an ACTION and a NAME for the
<CFPOP> query, which will be used by subse-
quent <CFOUTPUT> tags. Optional parame-
ters include the MESSAGENUMBER (which
could be a range or list of numbers). If the
MESSAGENUMBER isn't supplied, it's
assumed that the requested operation applies
to all messages rather than to just one.

The ACTION parameter can be “getall”
(get the entire message including header),
“getheaderonly” (get just the header) or
“delete” (delete the message from the serv-
er). Using ACTION="getheaderonly” with-
out supplying a MESSAGENUMBER returns
all of the headers. This format of the
<CFPOP> tag is used on the message list
page. Alternatively, using ACTION="getall”
and supplying a MESSAGENUMBER will
return the entire contents (header and
body) of a single message. This format is
used on the message display page.

The Login Page

The HTML form on the login page will
probably need four entry fields: POP user
name, POP user password, POP server
name or IP address and the user’s e-mail
address (see Figure 2). In an ideal world,
the POP user name and the server name
could be derived from the e-mail address.
(e.g., “joe@myisp.com” would have a POP
user name of “joe” and a POP server name
of “myisp.com”). This isn’t always the case.
Some ISPs give their customers POP user
names that are different from the name in
their e-mail address, and more often than
not the POP server isn't simply
“myisp.com,” but rather a specific system
name like “mailhost.myisp.com” or
“popserver.myisp.com”.

This page could be customized so that
some parameters are hard-coded. This is
useful if you're designing this application for
employees of a company or customers of an

28 GowFusion Deveroper’s JOURNAL o VOLUME: 1 ISSUE:2

Homowre! Fontrnan a bl g
Tiren P iche s sl o po oo

L Tl o T o8 hryur s grals ol coris

Yid Dederwy Sobrpoiee
;| SRR T

Witpest AR Kavad enie

P Encierbar Crdan St Cunitiors
Didir 57
mmu'nu-rﬂmhl

Figure 3: The main popART window

ISP, all of whom use the same POP3 server
and all of whom have their e-mail addresses
associated with the same domain. You can
also create defaults to use if some informa-
tion isn’t entered. For example, the name
and domain in the e-mail address can act as
the default POP user name and POP server
name if those fields aren’t supplied.

Message List Page

My version of this application, popART
(see Figure 3), makes use of a master page
containing three frames. A frame-based
architecture can be more efficient, cleaner
and more user-friendly because there’s less
need to use the “Back” button to navigate
between the message list and an individual
message.

The top frame is a title page containing
the popART logo, global buttons used by
the application and an ad link generated by
an ad server. The middle frame contains the
message list page that displays the headers
of the messages waiting on the server. The
bottom frame starts out blank, but will con-
tain the message display page when indi-
vidual messages are selected for reading.

If you use a similar design, the form on
the login page should connect to this mas-
ter page. Otherwise it can connect directly
to the message list page. First, the parame-
ters passed from the login form are used to
set the values of session variables.

<CFSET Session.user = #user#>
<CFSET Session.password = #password#>
<CFSET Session.servername = #servername#>

<CFSET Session.address = #address#>

Once these values are set, the <CFPOP>
tag is used to retrieve the message headers.
The output of this tag acts much like a
<CFQUERY>, as you'll see below.

<CFPOP NAME="“email”
ACTION="getheaderonly”

PORT=110 TIMEOUT=600
USERNAME="#Session.user#”
PASSWORD="#Session.password#”
SERVER="#Session.servername#”>

Note that the message bodies (and
attachments) aren'’t retrieved as part of this
process, just the headers. This should
make the process of retrieving the list
faster, but it also affords the user some
additional flexibility. If you can see the list
of messages before downloading them in
their entirety, you can selectively choose
not to download messages that you don't
want to see. You can appreciate this if
you've ever used a POP3 client program
and waited an eternity for several long
spam messages or messages with attach-
ments to download in order to read the one
genuinely important message that followed.

First, the parameters passed are used to
set the values of session variables.

<CFSET Session.user = #user#>

<CFSET Session.password = #password#>
<CFSET Session.servername = #servername#>
<CFSET Session.address = #address#>

The message headers are displayed as
part of an HTML table. (See Listing 1 for the
code snippets from this module.) The first
line is for column headings (From, Subject,
Received). Subsequent lines are generated
by the <CFOUTPUT> tag associated with the
query named “email”. There are columns for
message number, sender (from), subject
and date sent. The number displayed in the
message number column is a link to the
message.cfm module (see Listing 2), passing
the message number as a parameter.

Message Display Page

The message.cfm module’s primary func-
tion is to display the message body (see Fig-
ure 4). It begins this process by retrieving the
individual message using the <CPFOP> tag.

www.ColdFusionJournal.com

{e 'ri'.qp:u.-p.“ Anraatiar s,

'Eh- ; O .. ey
Dtk v bl

e .
P |

Rl b e

P Fach

E Dried 8 LD P, TS dicded DF Lld-led s

Thame yeu frv =perach ey Tissw, [oapelogaps due ske drlmp n
Lo 4

Figure 4: The main popART window with message display

<CFPOP NAME="“message”ACTION="getall”
PORT=110 TIMEOUT=600
USERNAME="#Session.user#”
PASSWORD="“#Session.password#”
SERVER="#Session.servername#”
MESSAGENUMBER="#num# " >

www.ColdFusionJournal.com

It then redisplays the header informa-
tion. Following the header, the body of the
message is displayed. You could do this
using the “<PRE>” tag, but long lines would
roll off the edge of the screen. Instead,
enclose the body text in a table, explicitly

VOLUME: 1 ISSUE:2 o

use a monospaced font, and append hard
line breaks in the message body with
“
" tags.

Reply Function

This would be sufficient if all you want-
ed to do is display the message. But this
module is also supposed to provide a mech-
anism for replying to the displayed mes-
sage. To accomplish this task, you must
first derive pertinent information from the
original message.

You derive the subject and prepend the
string “Re:” to it (if it isn't already there).
You also derive the reply address, which is
the “Reply-to” field (if it exists) or the
“From” field.

Finally, you build a copy of the message
body, indent each line with “>” and prepend
the whole thing with an introductory line.
(“On December 31, 1999, so-and-so@some-
where.com wrote:”) The JavaScript variable
“x” is set to the content of this bodycopy
field. The contents of this variable can be
retrieved by the subsequent module com-
pose.cfm by referring to “window.opener.x”.
This is actually far less cumbersome than
trying to pass this field as a parameter.

There must also be a link enabling the
user to compose a response. In popART, I
use an image for this link. The image links
to another JavaScript function, com-

GouoFusion Deveroper’s JournaL 29

poseMessage(). I place this image (and
other similar images used as links to similar
functions) at both the top and bottom of
the message display.

As I mentioned earlier, it's our goal to
reuse this function for other message com-
position tasks, such as forwarding, replying
to all or generating a new message from
scratch. Thus the function may be invoked
using different modes to perform these
additional tasks. Here, the function simply
derives the recipient and subject from the
header fields, and uses JavaScript's win-
dow.open function to open the com-
pose.cfm module (see Listing 3) in a new,
tailored window.

Message Composition Window

This window contains a table with text
input lines for each of the header fields and
a larger text area for the body of the mes-
sage (see Figure 5). This area is filled with
the contents of window.opener.x, the modi-
fied and indented copy of the original mes-
sage body. Note that the “From” field is hid-
den, but it can be set up as a regular modi-
fiable text field if so desired.

Sending the E-mail
The send.cfm module (see Listing 4)

makes use of the <CFMAIL> tag to send the
e-mail message. Note that it makes use of
the global variable SMTPhost, which was
set in the Application.cfm file earlier. Fol-
lowing the sending of the e-mail, the page
tells the user that “Your message was sent”
and lists the recipients. (This particular
version uses JavaScript's setTimeout func-
tion to automatically close this window
after eight seconds.)

Drawbacks, Deficiencies and

Additional Enhancements
Although the application in its current

state is very useful, a number of improve-

ments need to be added to make it a truly
robust e-mail application.

1. The “Reply” function should be comple-
mented with a “Reply All” function and a
“Forward” function. Most of the core
work is already there to support this.

2. The “New Message” function needs to
be built. The composeMessage Java-
Script function, found on the message
display page, has most of the function-
ality in place to do this. All that’s need-
ed is a link that calls this function with
a mode parameter of “new.” (I place
this link in the title frame of my appli-
cation.)

3. A function for permanently deleting
messages would also be nice. Given the
way this application interacts with the
POP server, the best way to handle this
is to “mark” messages for deletion, using
a checkbox next to the message number
in the message list. A link would be pro-
vided to “purge” all the marked mes-
sages permanently. This purging would
have to be followed by the re-retrieving
of all messages from the server to
refresh the message list, since deleting
messages in the middle of the list would
alter the numbers of all subsequent
messages.

4. Support for viewing and sending attach-
ments should also be included. The
<CFPOP> tag provides support for plac-
ing attachments in a specific directory
when a message is downloaded. But
placing these attachments in a directory
accessible through the Web server
would make these attachments openly
accessible as well. (One commercially
available Web e-mail service actually
places users’ attachments in a publicly
accessible directory for anyone to see!)
For security reasons, the attachments
directory shouldn’t fall under the Web
server’s root directory, nor should it be

Listing 1: list.cfm - Message List Page

</TR>

<!--- Get all message headers --->

<CFPOP NAME="message" ACTION="getall"
PORT=110 TIMEOUT=600
USERNAME="#Session.user#"
PASSWORD="#Session.password#"
SERVER="#Session.servername#"
MESSAGENUMBER="#num#" >

<!--- Table listing all message headers:
first line = headings

(From, Subject, Received) -->

<TABLE BORDER=0 CELLPADDING=3>
<TR>
<TD> </TD>
<TD ALIGN=center><U>From</U></TD>
<TD ALIGN=center><U>Subject</U></TD>
<TD ALIGN=center><U>Received</U></TD>
</TR>
<CFOUTPUT QUERY="email">
<TR>
<TD ALIGN=center VALIGN=center><A
NAME=msg#email . messagenumber#

TARGET="message_body"
>#email . messagenumber#</TD>
<TD ALIGN=left
<TD ALIGN=left

<TD ALIGN=left
VALIGN=center>#email .date#</TD>

VALIGN=center>#HTMLEdi tFormat (email . from)#</TD>

VALIGN=center>#HTMLEdi tFormat (email.subject) #</TD>

</CFOUTPUT>
</TABLE>

Listing 2: message.cfm - Message Display Page

<!--- Get header and body of message #num --->

<CFPOP NAME="message" ACTION="getall"
PORT=110 TIMEOUT=600
USERNAME="#Session.user#"
PASSWORD="#Session.password#"
SERVER="#Session.servername#"
MESSAGENUMBER="#num# " >

<SCRIPT>

<!--- Set Javascript variable x,
referred to later as window.opener.x --->

var X;

function setBodyCopy() {
x = "#Replace(bodycopy,'"','\""', "ALL")#" ;

}

HREF=message .cfm?num=#email . messagenumber# .
<!--- composeMessage function --->

function composeMessage (num,mode) {
recipient = "#URLEncodedFormat (Trim(ReplyAddress))#" ;

The complete code listing for this article can be located at
www.ColdFusionJournal.com

30 GowoFusion Deveroper’s JouRNAL

VOLUME: 1 ISSUE: 2

www.ColdFusionJournal.com

designated as a directory that can be
seen via the Web server. In this way,
attachments can be viewed or down-
loaded only through this application, by
users authorized to see only their own e-
mail attachments.

5. Most of the existing e-mail client pro-
grams automatically highlight hyper-
links, such as URLs and e-mail address-
es. By clicking on these hyperlinks, you
can open up new browser windows or
initiate e-mail messages. This is definite-
ly a nice feature to have in an e-mail tool,
but it’s very tricky to figure out where
such links begin and end (especially
when they end in commas, periods,
brackets or other punctuation). ColdFu-
sion’s REReplace function is powerful
enough to do a lot of this work, but the
endings of hyperlinks should be marked
carefully. (Also, think about this: Do you
want “mailto:” links to open the brows-
er’s internal e-mail response function or
your application’s?)

6. More robust error handling is required. If
the POP server doesn’t accept the user
name and password, the application dis-
plays a nasty error message from the
ColdFusion server. Also, there’s no indi-
cation of success or failure when e-mail
is sent. Additional error checking and
validation are necessary.

7. More robust security is also required.
Using ColdFusion 4.0’s Encrypt and
Decrypt functions might be useful for
encrypting passwords. Additional
code may be necessary to support
“refreshing” of session variables if
they’'ve timed out or, if desired, the
user can be required to sign in again
after a timeout. Using this application
over an SSL (Secure Sockets Layer)
connection is another way to enhance
security.

8. The <CFPOP> tag in ColdFusion 3.0 has
some known bugs. One rather serious
bug prevents users from reading any
message beyond the first one if that first
message has an attachment. (This was
fixed in ColdFusion 4.0.) It’s recommend-
ed for this reason that ColdFusion 4.0
should be used as the basis of this appli-
cation.

9. In addition, the <CFMAIL> tag lacks a lot
of the functionality one would want for
sending e-mail (blind carbon copy, reply-
to header, etc.). There are shareware and
commercially available ColdFusion tags
that can serve as plug-compatible
replacements for <CFMAIL> (and for
<CFPOP>), including Christopher Evans’s
CFX_MAIL and Patrick Steil's CFX_iiPOP3.
These are available at Allaire’s ColdFu-
sion Developer’s Exchange, formerly

known as the Tag Gallery (www.all-
aire.com/developer/gallery.cfm).

Conclusion

I've barely scratched the surface in
describing what'’s involved in building an
application like this. The code snippets I've
provided, for simplicity’s sake, don’t
include certain finesses in laying out the
pages the way they appear in the screen
shots. Still, I hope this article serves as a
useful introduction to the process of
designing and building a Web-based e-mail
system in ColdFusion.

If you'd like to take a look at the result-
ing application in its current state, visit
www.neurozen.com/popart. It’s still in beta;
however, it provides all the main features
and a number of the additional enhance-
ments described in this article. Fl

About the Author
Rich Rosen has been on the Net since before there was
a Net. He's been with Pencom Web Works
(www.pencomwebworks.com) since 1997, building
e-commerce, multimedia and Web/database connectivity
solutions using NetDynamics, Macromedia Flash,
RealAudio and ColdFusion. The popART e-mail system
described in this article is one of the many showpieces
at his personal Web site (www.neurozen.com).

M rr@newrozencom ||

www.ColdFusionJournal.com

VOLUME: 1 ISSUE:2 o

GouoFusion Deveioper’s Joumna 31

